莫里斯·威尔金斯1916年生于新西兰,6岁随父母回到英国受教育,毕业于剑桥大学。威尔金斯,专注于磷光、雷达、同位素分离与X光衍射等领域。毕业于剑桥大学,毕业后到伯明翰大学任教。因解开了DNA分子结构,以及一些相关研究,使其与弗朗西斯·克里克、詹姆斯·沃森共同获得了1962年的诺贝尔生理学或医学奖。
威尔金斯和富兰克林(R.Franklin,1920~1958)在建立DNA分子模型中的作用是非常重要的。威尔金斯是新西兰物理学家,40年代开始生物物理学的研究工作。1950年开始研究DNA晶体结构,并在方法上采取了“X射线衍射法”。他们拍摄出第一张DNA纤维衍射图(A型图),证明DNA分子具有单链螺旋结构。这在建立DNA的分子模型的工作中发挥了重要的作用。
——“尽管你不是天才,但如果拥有优秀的合作者,那么,你有可能获诺贝尔奖”
沃森和克里克博士的名字是在他们获奖前就听说了,因为他们提出了著名的DNA双螺旋结构模型。而威尔金斯的名字却是在当年公布诺贝尔奖获奖名单的时候才第一次听说的。
威尔金斯是牛津大学X射线衍射方面的教授。一天,大学里来了两位年轻人,一位叫沃森,另一位叫克里克。他们拜访教授的目的是想看一看DNA的X射线衍射照片,因为他们正在研究DNA的结构模型。
当时,教授研究室一名叫富兰克林的女士刚刚成功地拍到了DNA的X射线衍射照片。威尔金斯了解这一情况,希望富兰克林能与沃森他们合作,因为富兰克林虽说拍到了照片,但光凭照片还无法清楚地了解DNA的结构。可是,威尔金斯的建议被富兰克林女士拒绝了。她认为,即使不与沃森他们合作,早晚也能拍到清晰的结构照片,没有必要把发现DNA结构的成绩拱手让给他人。
威尔金斯的看法却不同。他认为就现在的技术看,富兰克林女士无法拍到清晰的DNA结构照片,而沃森和克里克连衍射照片都没有见到过。他们一个是搞生物的,另一个是研究理论分子生物学的,两人都不是搞化学的。但他们却掌握了一些有关DNA结构的信息和设想,如果让他们看到照片,回答他们提出的问题,也许就能完成DNA的结构模型。
由于富兰克林女士始终拒绝合作,威尔金斯只好在富兰克林没有同意的情况下与沃森他们一起研究这一课题。他们集中了夏尔科夫有关核酸的化学信息、克里克的设想,富兰克林女士的DNA的X射线衍射照片以及威尔金斯为照片写的说明,最终共同提出了DNA双螺旋结构模型。
1962年,威尔金斯与沃森、克里克一起被授予诺贝尔生理学医学奖。非常遗憾的是,社会上始终认为模型是沃森和克里克的,不承认是3人共有的。
威尔金斯为什么因DNA的结构模型而获诺贝尔奖呢?
首先,沃森要提出DNA双螺旋结构模型,富兰克林女士的衍射照片和威尔金斯的照片说明是必不可少的。其次,也许是因为诺贝尔奖规定,每项奖的共同获奖人数不能超过3人,而评奖时,富兰克林女士已经逝世,所以,诺贝尔基金会就选择了他们3人。
虽然威尔金斯的照片说明对完全不了解x射线衍射的沃森来说是完成模型必不可少的,但并不是模型设计中必不可少的构思。这一点与克里克不同。克里克在完成模型的过程中提出过全新的设想。虽说最终方案是沃森提出的,但追根寻源,它仍是克里克的思想。这个模型真正是他们两人智慧的结晶。
无论怎么说,威尔金斯不顾富兰克林女士的反对,决定与沃森、克里克合作,促使模型诞生,使有关生命现象的科学大大向前迈进了一步,所以,他的获奖与其说是从科学角度对他的评价,不如说是从社会的角度对他的肯定。
以上说的大都是社会上长期流行的说法。也有人不这样看。他们认为,威尔金斯是从X射线方面来推进DNA分子结构研究的,他显示了细胞内的DNA是B-螺旋结构,并且通过实验证明了沃森-克里克模型是B-螺旋结构。也就是说,他的研究本身对科学作出了贡献。
让沃森看到X射线衍射照片,因DNA模型获诺贝尔奖。
翻译遗传密码的步骤 遗传密码是指3个组的碱基,也称碱基三联体。密码是按以下顺序被破译的:
①遗传信息的转录:先拆开DNA分子的双螺旋链,合成信使RNA(mRNA)。信使RNA具有与另一方的核苷酸互补的碱基排列。
②遗传信息的传递:信使RNA从核内向细胞质移动,与核糖体结合。核糖体是合成蛋白质的场所。
③氨基酸的转移:转移RNA(tRNA)与特定氨基酸结合,结合后被转移到核糖体上。转移RNA究竟选择哪一种氨基酸结台,这要根据它的一端所携带的未配对的碱基三联体(反密码子)是否能与它的另一端所携带的特定氨基酸相应的三联(密码子)互补,哪一种氨基酸的三联能与未配对的三联体互补,就选择哪一种氨基酸。
④遗传密码的翻译和蛋白质的合成:核糖体一边往信使RNA上移动,一边解读其密码,使携有互补碱基的转移RNA顺序与其结合。按信使RNA的遗传信息排列的氨基酸与核糖体结合成为蛋白质。完成转移任务的转移RNA将脱离信使RNA。
说到张飞很多人都在说他还是比较厉害的,但是相对于其它武将来说一般般了,但是如果真正了解张飞的人会知道,历史上真实的张飞可不这样的,那么真正历史上的张飞到底实力如何?是不是被轻视了?下面我们一起来详细看看吧。
◆宋引章历史原型是谁?真实的宋引章是怎么样的? ◆逢蒙是谁?他是谁的徒弟?是个什么样的人? ◆大羿和后羿是不是一个人?他们之间有什么关系? ◆女娲是被谁杀了?女娲是怎么死的? ◆拿破仑和希特勒的区别是什么?本质方面最近很多人都在问这个爆米花的事情,因为很多人应该知道的,那就是宋朝其实就有了爆米花的,那么这个宋朝的爆米花是用什么做的呢?然后又是用来做什么的呢?相关的问题很多人问了,下面一起来简单的分析看看吧。
◆历史上被抹去的朝代盘点 ◆元朝汉人60岁必须死是真的吗?有历史依据吗? ◆兵马俑的来历故事 ◆明朝那些事儿歪曲历史汇总 ◆朱高炽不死朱瞻基必定被废说法成立吗?其实在西游记中,孙悟空本身的形象是被美化过的。孙悟空从灵石中蹦出,原本应该是展现出最原生态的一面,但是在西游记中淡化了这点,所以说孙悟空的真身到底是什么样子的呢?总结孙悟空的一生可以说是有五个身份,从最自然的状态直到取完西经后成佛,当然这都是一个成长的过程,只是最初的状态据说也是相当恐怖,如果孙悟空是妖怪出身的话估计也是一个非常棘手的存在了。
◆三星堆龟背形网格状器有何作用 ◆朱元璋为何喜欢朱允炆 ◆朱瞻基为什么要弑父?这样的说法有真实性么? ◆河豚鱼计划是真的吗?是什么意思? ◆明朝真的有骨气吗?是最有骨气的王朝吗?丰岛海战是清朝历史上很重要的一次海战了,当时话说也打得非常的激烈,那么丰岛海战都有哪些重要人物呢?牺牲的人又有哪些呢?下面一起来看看具体的一个情况吧。
◆顿巴斯地区为什么那么难打?为什么非打不可? ◆亚速钢铁厂有多难打?看看地下工事剖面图全明白了 ◆俄罗斯车臣特种部队厉害吗?从历史上的车臣战争就知道了 ◆车臣战争有多恐怖?看看这组数据就知道了 ◆车臣相当于中国的什么?无法类比但是可以从古代史上找到答案说到古代人对一个地方的喜爱用什么来表达,其实很简单的那就是诗句了,今天就给大家来盘点盘点江西这个地方中国历史上有哪些大诗人都用诗句写过,感兴趣的可以一起来看看了。
◆救风尘讲的是什么故事 ◆救风尘是悲剧吗 ◆梦华录是根据什么改编的?关汉卿的元杂剧大家了解下 ◆君子慎独,卑以自牧的意思是什么?如何理解? ◆伐冰之家不畜牛羊是什么意思?怎么理解?说到这个玄奘法师还是有太多的争议了,那么真正历史上的玄奘法师是怎么样的呢?相关的问题还是很多人问的,下面我们一起来看看。
◆元朝一共有几个皇帝?分别都是谁? ◆怎么理解元朝统治下汉人妇女太惨这个说法 ◆元朝到底有多黑暗?这些历史信息可知一二 ◆元朝根本不属于中国历史的说法对吗? ◆元朝灭亡后蒙古人去哪了最近很多人对土耳其和伊拉克的战事又吸引了,很多人要问了,这两家又为什么要打起来呢?这个问题还是比较有意思的,也还是值得探讨的,毕竟国外的一些历史我们还是狩猎比较少的,今天我们就来简单的学学吧。
◆2008年格鲁吉亚事件始末 军事冲突背后又有很多故事 ◆格鲁吉亚人为什么歧视中国人?看他们总统的身份就知道了 ◆南奥塞梯地理位置在哪?人口和面积介绍 ◆南奥塞梯现在归谁?属于哪个国家? ◆美国最无能的五位总统分别是谁?话说这5个人不会被美国历史遗忘说到收藏很多人的第一感觉就是难度高,入不了门,其实还是有很多的方法可寻的,下面是一篇关于囊中羞涩如果玩收藏的文章,感兴趣的可以一起看看。
◆崖柏香味有毒吗? ◆莫桑钻和钻石的价格有区别吗? ◆金丝铁线是指什么? ◆榴石到底是什么宝石 ◆1角钱硬币价值多少钱?哪一种最有收藏价值最近很多人想知道这个中国各个朝代的时间表,那么这个表具体是怎么样的呢?具体时间是怎么回事呢?下面我们一起来详细的分析看看吧,感兴趣的别错过了呀。
◆大禹治水的精神和启示 ◆夸父逐日反映了什么精神?说明了什么道理? ◆夸父逐日的作者是谁?是谁写的? ◆夸父追日神话故事内容 ◆夸父逐日的寓意的什么?常用来比喻什么?说起美国,相信大家都不陌生。虽然这个国家的历史只有200多年,但是这个国家就像一个青春洋溢的青年,非常有活力,在短短的100多年里发展成为世界上最强大的国家。据说清末的时候,美国城市已经很现代化了。真的是这样吗?接下来我们一起来看看清末同期美国城市的照片。
◆中世纪的黑死病爆发的原因真的是因为老鼠吗?罪魁祸首是谁? ◆希特勒的娃娃兵 ◆二战各国领导人童年照片 ◆南非种族隔离图片 ◆半米长的蜈蚣图片